Phosphodiesterase type 3A regulates basal myocardial contractility through interacting with sarcoplasmic reticulum calcium ATPase type 2a signaling complexes in mouse heart.
نویسندگان
چکیده
RATIONALE cAMP is an important regulator of myocardial function, and regulation of cAMP hydrolysis by cyclic nucleotide phosphodiesterases (PDEs) is a critical determinant of the amplitude, duration, and compartmentation of cAMP-mediated signaling. The role of different PDE isozymes, particularly PDE3A vs PDE3B, in the regulation of heart function remains unclear. OBJECTIVE To determine the relative contribution of PDE3A vs PDE3B isozymes in the regulation of heart function and to dissect the molecular basis for this regulation. METHODS AND RESULTS Compared with wild-type littermates, cardiac contractility and relaxation were enhanced in isolated hearts from PDE3A(-/-), but not PDE3B(-/-), mice. Furthermore, PDE3 inhibition had no effect on PDE3A(-/-) hearts but increased contractility in wild-type (as expected) and PDE3B(-/-) hearts to levels indistinguishable from PDE3A(-/-). The enhanced contractility in PDE3A(-/-) hearts was associated with cAMP-dependent elevations in Ca(2+) transient amplitudes and increased sarcoplasmic reticulum (SR) Ca(2+) content, without changes in L-type Ca(2+) currents of cardiomyocytes, as well as with increased SR Ca(2+)-ATPase type 2a activity, SR Ca(2+) uptake rates, and phospholamban phosphorylation in SR fractions. Consistent with these observations, PDE3 activity was reduced ≈8-fold in SR fractions from PDE3A(-/-) hearts. Coimmunoprecipitation experiments further revealed that PDE3A associates with both SR calcium ATPase type 2a and phospholamban in a complex that also contains A-kinase anchoring protein-18, protein kinase type A-RII, and protein phosphatase type 2A. CONCLUSIONS Our data support the conclusion that PDE3A is the primary PDE3 isozyme modulating basal contractility and SR Ca(2+) content by regulating cAMP in microdomains containing macromolecular complexes of SR calcium ATPase type 2a-phospholamban-PDE3A.
منابع مشابه
Cellular Biology Phosphodiesterase 4D Regulates Baseline Sarcoplasmic Reticulum Ca Release and Cardiac Contractility, Independently of L-Type Ca Current Short Communication
Objective: The goal of this study was to determine whether PDE4D regulates basal cardiac contractility. Methods and Results: At 10 to 12 weeks of age, baseline cardiac contractility in PDE4D-deficient (PDE4D / ) mice was elevated mice in vivo and in Langendorff perfused hearts, whereas isolated PDE4D / cardiomyocytes showed increased whole-cell Ca transient amplitudes and SR Ca content but unch...
متن کاملThe Effect of Verapamil Administred before the Reperfusion Insult in Isolated Preconditioned Rat Heart on the Microsomal ATPase and Mitochondrial Enzyme Activities
Background: Calcium overload and free radical mediated damage in the mitochondria is the most important pathological changes associated with myocardial ischemic-reperfusion injury. The verapamil post-treatment has been previously reported to prevent reperfusion-induced myocardial injury but functional recovery may be delayed due to the drug's inherent direct myocardial depression effect. In the...
متن کاملRegulation of sarcoplasmic reticulum Ca2+ ATPase 2 (SERCA2) activity by phosphodiesterase 3A (PDE3A) in human myocardium: phosphorylation-dependent interaction of PDE3A1 with SERCA2.
Cyclic nucleotide phosphodiesterase 3A (PDE3) regulates cAMP-mediated signaling in the heart, and PDE3 inhibitors augment contractility in patients with heart failure. Studies in mice showed that PDE3A, not PDE3B, is the subfamily responsible for these inotropic effects and that murine PDE3A1 associates with sarcoplasmic reticulum Ca(2+) ATPase 2 (SERCA2), phospholamban (PLB), and AKAP18 in a m...
متن کاملCalcium cycling proteins and heart failure: mechanisms and therapeutics.
Ca2+-dependent signaling is highly regulated in cardiomyocytes and determines the force of cardiac muscle contraction. Ca2+ cycling refers to the release and reuptake of intracellular Ca2+ that drives muscle contraction and relaxation. In failing hearts, Ca2+ cycling is profoundly altered, resulting in impaired contractility and fatal cardiac arrhythmias. The key defects in Ca2+ cycling occur a...
متن کاملTargeted ablation of the phospholamban gene is associated with markedly enhanced myocardial contractility and loss of beta-agonist stimulation.
Phospholamban is the regulator of the Ca(2+)-ATPase in cardiac sarcoplasmic reticulum (SR), and it has been suggested to be an important determinant in the inotropic responses of the heart to beta-adrenergic stimulation. To determine the role of phospholamban in vivo, the gene coding for this protein was targeted in murine embryonic stem cells, and mice deficient in phospholamban were generated...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 112 2 شماره
صفحات -
تاریخ انتشار 2013